Event participant modelling with neural networks

نویسندگان

  • Ottokar Tilk
  • Vera Demberg
  • Asad B. Sayeed
  • Dietrich Klakow
  • Stefan Thater
چکیده

A common problem in cognitive modelling is lack of access to accurate broad-coverage models of event-level surprisal. As shown in, e.g., Bicknell et al. (2010), event-level knowledge does affect human expectations for verbal arguments. For example, the model should be able to predict that mechanics are likely to check tires, while journalists are more likely to check typos. Similarly, we would like to predict what locations are likely for playing football or playing flute in order to estimate the surprisal of actually-encountered locations. Furthermore, such a model can be used to provide a probability distribution over fillers for a thematic role which is not mentioned in the text at all. To this end, we train two neural network models (an incremental one and a non-incremental one) on large amounts of automatically rolelabelled text. Our models are probabilistic and can handle several roles at once, which also enables them to learn interactions between different role fillers. Evaluation shows a drastic improvement over current state-of-the-art systems on modelling human thematic fit judgements, and we demonstrate via a sentence similarity task that the system learns highly useful embeddings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Prediction of Deformation of Circular Plates Subjected to Impulsive Loading Using GMDH-type Neural Network

In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...

متن کامل

Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding

In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016